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Abstract

Kitcher (1996) offers a aitique of connedionism based on the
belief that connedionist information processng relies
inherently on metric similarity relations. Metric similarity
measures are independent of the order of comparison (they
are symmetricd) whereas human similarity judgments are
asymmetricd. We answer this challenge by describing how
conredionist systems naturaly produce @ymmetric
similarity effeds. Similarity is viewed as an implicit by-
product of information processng (in  particular
caegorizaion) whereas the reporting of similarity judgments
is a separate and explicit meta-cogritive process The view of
similarity as a process rather than the product of an explicit
comparisonisdiscussd in relation to the spatial, feaure, and
structural theories of simil arity.

1. Introduction

Conredionist models of cogntive processng have been
criticized for their apparent reliance on a notion o
psychologicd similarity that empiricd evidence has
demonstrated to be flawed (Kitcher, 1996). This argument is
based on the belief that connedionist information
processng relies on metric distance measures of similarity.
Whether the similarity occurs at the level of the inpu
representation, the hidden unit representation, or the output
representation, proximal tokens in a multi-dimensional
gspace (defined by the daraderistics of the task) are
procesed similarly. This, argues Kitcher, is necessrily
wrong since metric distance measures have been ruled out
as plausible models of psychologicd similarity.

In this paper, we ague that non-metric similarity
measures do arise naturally out of connedionist information
processng. These measures are based on functional
transformations and are nat constrained to okey the metric
axioms of Minimaity, Symmetry, and the Triangle
Inequality. Therefore, they are immune to the objedion that
psychologicad similarity does not itself appea to okey the
metric axioms (Kitcher, 1996; Tversky, 1977). We will
sugeest that there ae two similarity processes in the
cogntive system. One is non-metric and arises naturaly
from the functional transformation properties of non-linea
conredionist information processng. The other can be
metric and is constructed from the outcome of a prior and
inevitable non-metric phase of processng. The non-metric
comporent is implicit and not accessble to meta-cognitive
processes. The metric comporent is only engaged when the
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evaluation of similarity has to be made eplicit (e.g., it has
to be oommunicaed) such as in a similarity judgment task.
That is, the initial comparison is implemented by a non-
metric transformation; the requirement to make asimilarity
judgment introduces a further metric comparison process
We will argue that under certain conditions, functiona
transformation measures can generate behavior similar to
metric distance measures, and hence that metric distance
measures offer an approximate description of the processes
underlying simil arity judgments.

The rest of this paper proceals as follows. First, we
present Kitcher's (1996) argument in more detail and
discussasymmetry as a ourter example to metric distance
measures of similarity. Then we present the
Transformational Function Similarity (TFS) measure and
discusshow it overcomes the asymmetry problems of metric
measures. Finaly, we discuss how a metric comparison
measure can be constructed from the products of prior TFS
stage.

2. Connectionism and metric similarity

A recent attadk on connedionist information processng
as amode of cognition has focused on the question o how
information is processd in a network (Kitcher, 1996).
Kitcher begins by unpadking Churchland and Sejnowski' s
(1992) charaderization of adivation petternsin anetwork in
terms of vedors. The implicaion d this charaderizaion is
that the adivation petterns define amultidimensiona vedor
spacethat naturally supports metric distance measures. The
similarities between oljeds are refleded by the distance
between the paositions their representations occupy in
adivation space However, Tversky (1977) has identified a
number of ways in which psychologicd nations of
similarity do nd appea to acwmrd with predictions of a
metric model of similarity. Althowgh his efforts to show that
Minimality and the Triangle Inequality do not hold for
human smilarity judgments may be inconclusive,
Symmetry certainly does not hold in human similarity
judgments (Hahn & Chater, 1996). As a result, we will
focus our discusson on the notion of symmetry in
psychologicd simil arity.

Symmetry in this context is taken to meen that similarity
judgments are commutative. In ather words:

asSh = bSa where xSy isthe similarity of xtoy (1)



Let a and b be two tokens that can be described as
occupying positions in a metric space Then, the simil arity
relation is the same whatever the order of comparison.
Studies requiring subjeds to rate the similarity of a pair of
items suggests that this is not the cae with psychologicd
nations of similarity (e.g., Tversky & Gati, 1978). For
example, when asked to compare pairs of concepts, subjeds
readily rated North Korea as being more similar to Red
China than Red China was to North Korea In short,
reported similarity seems to change acording to the order
of the cmparison.

3. Solutionsto the asymmetry problem

Most theories of similarity have grappled with the
asymmetry problem. The spatia theory of similarity (e.g.,
Rips, Shobken, and Smith, 1973, Rumehat and
Abrahamson, 1973) envisages concepts as points in a multi-
dimensional space The similarity between two concepts
corresponds to their distance (e.g., Euclidean distance) apart
in this gace This theory can acount for asymmetric
comparisons provided ead concept is given a hias
(Nosofsky, 1991). The bias relates to how easy it is to
processa given concept. The diredion of travel between the
concepts in similarity space (corresponding to the order of
the comparison) interads with their respedive biases. If the
two concepts have different biases, the similarity will be
different depending onthe diredion o travel. The fedure
theory of similarity (Tversky, 1977) measures the simil arity
between two concepts as me function of the number of
fedures they have in common and the number on which
they differ. This theory can acount for the asymmetry by
proposing that concepts have feaures with dfferent
salience. The concepts will be judged more similar if the
fedures that the ancepts have in common have a higher
salience in the seoond term of the comparison (Ortony,
Vonduska, Foss and Jones, 1985). The structura
alignment theory of similarity (Markman and Gentner,
1993 Medin, Goldstone, and Gentner, 1993) measures the
simil arity between two concepts depending on how well the
structures of ead concept can map onto ore ancther. This
theory can acwunt for the asymmetry as long as the
coherence of the structures of the @ncepts is taken into
acourt (Gentner and Bowdle, 1994). Coherence is defined
as the degree of systematicity a cncept poseses. A
coherent concept will have many "causal or explanatory
conredions’ (Gentner and Bowdle, 1994, p. 352.
Similarity judgments are higher if the more mherent
concept isthe second term in acomparison.

In &l these theories, the basic definition o similarity is
symmetricd. Asymmetries are derived by introducing
additional fadors, such as bias, salience, or coherence.
Tversky introduces the naotion that some fedures are more
digtinctive than others. Ortony et a and Gentner and
Bowdle seek to capture the notion that similarity
comparisons are psychologicdly informative. Nevertheless
the eplanations of the aymmetry lie in extensions to
symmetricd comparison pocedures. A more parsimonious
solution would derive the asymmetry as a consequence of
the basic mechanism by which similarity was computed. As

we shal see below, passng an input vedor through a
conredionist autoassociator does just that.

With this debate in mind, we @n begin to reassess
Kitcher's (1996) critique. Generally, there gopeas to be no
entirely satisfadory solution to the asymmetry problem. The
first point we might make then, is that the problem is not
uniqgue to connedionist information processng and
therefore should na be used to single out connedionist
approaches in particular for criticism. However, the ultimate
answer to Kitcher' s argument would be to produce a
conredionist model that employed vedor-coding and yet
showed redistic, nonmetric similarity judgments. This is
exadly what we propose to do The key is to move away
from the idea of similarity as the outcome of a dired
comparison procedure and to move towards the idea of
similarity as a processwhase outcome can only be reported
in a post hoc fashion. The similarity process does not rely
on dadng the mmparative dementsin some metric relation
to ead other. Only the post hoc reporting (or explicit
accesy of similarity requires the establishment of a metric
relation.

One way to understand this distinction is to think of the
mind as a modular information processng system. As
information passes through a module it is procesed (or
transformed) and passd on to the next module. This next
modue takes the transformed information as inpu and
continues to process the information further. Note that the
second module does not need to know anything about the
nature of the previous transformation. The system as a
whoe ontinues to function withou any neel to relate
explicitly the outcome of a process (the transformed
information) with the initial state of the information prior to
procesing by the first module. However, some meta
process or control-process wishing to evaluate the
functioning of the first module can do so by sampling and
comparing the input information to the resulting output
information. We want to suggest that similarity is related to
the way in which information is processd (transformed)
whereas the reporting of similarity judgments is a meta-
cogntive process requiring the explicit comparison of
information prior and subsequent to processng by the
cognitive system.

The rest of this paper will describe how such similarity
arises naturaly from conredionist information processng
through a processof seledive dimensional distortion of the
inpu vedors. The degree to which dstortion occurs is
inversely related to the similarity between the input vedor
and the contextualized knowledge stored in the network.

4. Transformational Function Similarity

Feadforward conredionist networks implement a
transformation function from an inpu spaceto an ouput
space The dimensionality of the inpu and ouput spaces are
defined by the task domain. Consider the set of networks for
which the input and ouput space @ of the same
dimensionality. Such networks can be seen as engines that
twist and dstort the metric relations of the input space
Autoassciators are a subset of this st of networks for
which a number of input vedors are exadly reproduced by



the network. These vedors are invariant under the
transformation that the network performs.

The training set of afully trained autoassociator constitute
the invariant vedors. In standard matrix algebra, vedors
which are invariant under matrix multiplicaion (modulo
multi plicaion by a constant) are described as eigenvectors.
By analogy, we might define the trained inputs to an
autoassciator network as the quasi-eigenvedors or g-
eigenvectors of the network's trans-formation function. Parts
of the input space in the neighborhood o these g-
eigenvedors will ad as attrador basins and map onto the
invariant vedor at the output. This is what gives the
network the power to ded with noisy inpu and to perform
pattern completion. Other input vedors will be distorted
acording to how much they lie within the dtrador basins
of the network's g-eigenvedors. If they lie cmpletely
within an attrador basin, they will be mapped orno a
particular eigenvedor. However, in most cases, an unrelated
inpu vedor will fall acoss gvera attrador basins, ead of
which will attempt to map that segment of the input vedor
orto its appropriate g-eigenvedor. What results will be a
significant distortion of the input vedor, with dfferent parts
being mapped orto dfferent g-eigen-vedors.

More formally, the transformation function implemented
by this network is:

OUTPUT =1{(INPUT) = M (g(M,(INPUT))) (2

where OUTPUT is the output vedor, INPUT is the input
vedor, M, is the matrix of weights between the inpu and
hidden unts, M, is the matrix of weights between the
hidden urits and the output units, and ¢(x) is a non-linea
monatonic function (such as the logistic function) applied to
ead component of x.

The degree to which an input is distorted will depend on
how close INPUT is to an eigenvedor of M,, how strongly
nonlinea g(x) is, and how close g(M ,(INPUT)) is to the
eigenvedors of M,. Note that because g(x) is nontlinear, it
is not metric preserving and hence f itself is not a metric
invariant transformation. The function implemented by a
feadforward network does not preserve metric relations.

We can then define Transformational Function Simil arity
(TF9 as the inverse of the distance between the original
inpu and the transformed ouput of the network (i.e.
1/Verror score). Comparing A to B involves presenting A to
a network able to autoassociate B and evaluating how much
A has been transformed by the g-eigenvedor encoding the B
representation. Patterns that experience asmall degree of
transformation are very similar to B, whereas patterns that
are transformed to a high degree are dissmilar to B. The
transformation accurs naturally as part of connedionist
information  processing. The evaluation of the
transformation (measuring the degreeof distortion o A) isa
post hoc processthat can involve metric comparisons.

5. An example of TFS measurements

In order to generate notional knowledge bases to ill ustrate
TFSmeasurements, we will define 3 concepts, {a}, {b}, and
{c}. Each concept will comprise 3 prototypes, defined over
a vedor of 15 feaures. We generate 10 exemplars from

ead prototype, by adding Gaussan ndse (sd=0.2). The
network will gain its knowledge of ead concept by training
on eat set of 30 exemplars. A network is trained to
autoasociate eab  knowledge base over separate
rePresentational resources. The network is siown in Figure
1

For ead knowledge base, we derive a mean vedor from
the set of exemplars. This represents the central tendency of
that knowledge base ad will provide us with a
charaderizaion of the knowledge stored in the network, for
comparative purposes in the analysis provided below. The
mean vedors are as foll ows.
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If we define the metric similarity between these vedors as
the inverse of the Euclidean distance between them, then
their metric simil arities are as foll ows.

ash=09,bSc=11,asc=11
Note that these values are symmetricd:
bSa=0.9,cSh=11,cSa=11

Now consider the TFS values (where TFS is defined as
1VSSE of the aitoassociator):

aSh=1.0,bSc=1.3,cSa=1.1
These ae not symmetricd measures:
bSa=1.0,cSb=1.1,aSc =13

The TFS measure is at a maximum when the mean vedor
for a given knowledge base is transformed by that
knowledge base. Thus

aSa=25,bSh=25,cSc=25

These figures are the average of 12 runs of the network.
This averaged result demonstrates that in principle,
transformation based comparisons do not have to be
symmetricd. However, it also masks individual cases where
there ae greder asymmetries in the comparisons (see
Figure 2, cases 1 & 2). This demonstrates that comparisons
will be sensitiveto prior network states and the nature of the
exemplar set to which the network is exposed.

! 6 hidden urits were used to represent ead knowledge base,
and the sub-networks were trained for 1000 epochs with aleaning
rate of 0.1 and a momentum of 0. The network aso employed
sigmoidal output units. Network weights were initialy randomized
between +1.0. The transformation function o a given net-work
will be sensitive to its architedure axd the @nditions of its
training.
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Figure 1: Example neural network architecture for performing similarity
judgments using Transformational Function Similarity.

In this example, we have used the mean of the training
exemplars, d, to represent the inpu vedor in the
comparison A is like B. This is a simplificaion. Subjeds
will use their own conceptual store (refleding their personal
history of encounters with the exemplars) to internaly
generate the most prototypicd representation o a concept in
the given context, rather than a smple aserage of all their
encounters with exemplars of that concept. It is this
representation that will be transformed in the comparison.
Nevertheless the aurrent example demonstrates that TFS
similarity may generate comparisons that are not
symmetricd.

6. Concepts and classification

The psychadlogicd story behind this form of processngis
as follows. Similarity judgments per se are not a primary
function o the cogntive system. Similarity arises as a
consequence of clasgfication. It is of crucial importance for
an organism to be able to classfy new situations and oheds
in its environment so that it may bring to bea appropriate
knowledge in deding with them. Given a set of feaures that
describe anew situation/objed, the agnitive system’s task
is one of pattern remgnition. This is a task that
conredionist networks are well suited to perform. A
frequently proposed architedure for connedionist pattern
recogntion is autoasociation. To establish whether X is an
instance of A, we find out whether a network trained to
autoasciate the various instances of A can acairately
reproduce X. The similarity judgment is a refledion d the
acaracy of that reproduction. In this view, similarity
judgments do na require a speda purpose mechanism.
Similarity judgments are an adjunct to our ability to classfy.

In general, the representation of a wncept is developed
through experience with a range of exemplars. A network
that autoassociates knowledge aout these exemplars will
extrad a prototype of the concept, to which it will respond

preferentially. This refleds the typicdity effeds demon-
strated by tumans in clasdficaion tasks (Rosch, 1973). A
network that represents a ancept will thus tend to generate
g-eigenvedors for the prototype or prototypes of that
concept.

7. Therepresentation of conceptsand the
role of context in comparisons

In Figure 1, we have split the representations of the
concepts {a}, {b}, and {c}, into separate sub-networks. In
fad, it is more likely that concepts would share
representations as a function o their similarity. One avenue
of future work would be to determine how this organization
might emerge by virtue of the leaning procedure.

We envisage that spedfic instances of a general concept
would be represented as pedfic mappings aaoss the
genera areaof the network resporsible for representing the
general concept. Thus the mncept {Michad Jordan} would
be a mapping aaoss the sub-network responsible for
representing basketball players. This has the following
implicdion with regards to similarity comparisons. Asking
whether X is $milar to a basketball player enforces a given
transformation on X. Asking whether X is dmilar to
Michad Jordan, however, would involve using this same
basketball network with the Michad Jordan label adivated.
This would modify the transformation performed by the
network. In this example, the Michad Jordan label plays the
role of contextual information, that mediates the
transformation performed by the basketball player network.
This ill ustrates the more general point that Transformational
Function Simil arity is context sensitive.

8. Bias, Salience, and Coherencerevisited

We have daimed that asymmetries in comparisons fall
naturally out of the comparison processitself. In sedion 3
we reported a number of additional fadors proposed as
explanations for how basicdly symmetricd comparison
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Figure 2. These triangles show the similarity-distance between
three concepts{a}, {b}, and {c}, generated by a Metric similarity
measure (Euclidean distance) or by the metric comparison phase
of the Transformational Function procedure. The metric
comparison is symmetrical. TF similarity is asymmetrical, varying
according to the direction of comparison (Clockwise = ato ¢, cto
b, b to a; Anti-clockwise =ato b, b to c, c to a). The length of the
side between two vertices corresponds to the inverse of the
similarity between the corresponding concepts. (See Section 5 for
more details).

procedures could generate asymmetries. The notions of bias
and salience were ascribed to individual concepts. For
example, when a concept with a high salience formed the
second term of a comparison, then similarity was greater
than if it formed the first term. The TFS approach aso
alowsfor effects stemming from individual concepts. These
will relate to the normal factors which determine how well
networks perform transformations in general. Thus an
autoassociative network with more training will tend to
produce more accurate reproductions than an equivalent
network with less training. And within a given network,
exemplars appearing more often in the training set will tend
to be reproduced more accurately than those presented less
often. The network performing the transformation
corresponds to the second term in the comparison. If we see
the salience of a concept as equivalent to the amount of
training a network has received on that concept, then the
claim that more salient concepts produce greater similarity
judgments when they form the second term of a comparison
corresponds to the idea that a better trained autoassociator
with more training, autoassociates better.

The second term is aso privileged when it is a more
general or prototypical case of a given concept. Thus
subjects prefer Red Chinato come second in the comparison
of Red China and North Korea because China is the more
general case of a communist country (Ortony, Vondruska,
Foss, and Jones, 1985). In network terms, this preference
reflects that fact that an autoassociator trained on a wider
range of patterns will tend to produce more accurate
autoassociations of any given pattern. Thus a network
trained on every possible autoassociation would reproduce
every pattern very accurately. Every pattern would have a
high similarity to that knowledge base.

Casel.

Metric Clockwise TFS  Anti-clockwise TFS
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Case 2.
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Gentner and Bowdle (1994) put forward the notion of
coherence to explain how a symmetrical mapping procedure
could generate asymmetrical comparisons. Similarity will
be judged greater when the more coherent concept comes
second in a comparison. The notion of coherence is tied to
theories concerning the relation between linguistically
structured representations - that is, those constructed along
assumptions of compositionality and systematicity.
Connectionist networks are not currently at a stage to give
robust accounts of conceptual representation, so long asit is
thought to be like language. We suggest that if and when
connectionist accounts extend to give accounts of the human
behavior that has led to the Language of Thought
hypothesis, then the TFS theory may similarly be extended.
(For example, a structural comparison of the concepts A and
B, might involve a transformation of the structure of A
using the network representing the structure of B).

In short, the TFS measure is consistent with ideas of bias
and salience previously proposed to account for asymmetry
effects. Both fal naturally out of the training procedures
used with connectionist autoassociators. For the moment, it
is difficult to see how the idea of coherence could be
extended to the TFS measure.

9. Analogy: Static Mapping or High Level
Per ception?

Previous computational models of analogy have broadly
falen into two camps. The first of these sees analogical
comparisons as involving mappings or links between two
static representations (e.g. ACME: Holyoak and Thagard,
1989). Some kind of mapping "engine" sees how well one
representation fits over another: whether they have the same
shape, which parts of one correspond to which parts of the
other, and so on. The second view sees anaogica
comparisons as involving the formation of new,
dynamically configured representations, created by the



comparison processitself (e.g. Copyca: Hofstadter, 1984
Mitchell, 1993 Tabletop: Hofstadter and French, 1994).
These reseachers describe analogy as a process of “high
level perception”. In the cmparison A islike B, the process
redly isoneof seangAasif it were B.

Theories of analogy must be based on an underlying
nation of similarity. A theory of analogy based onthe TFS
view would have afoot in bah of the above camps. A
comparison initialy involves a transformation, which
generates a new representation. For A is like B, B
knowledge transforms the A representation to creae anew
representation, B(A). Thomas and Marescha (1996)
proposed that this new representation might be seen as a
metapharica comprehension of A, transformed by seeéng A
as B. To measure the similarity of A to B (for example, in
order that one might respond in a similarity judgment task),
one must evaluate how well B knowledge has reproduced
the A representation. That is, a procedure must compare the
static representations for A and B(A). To derive alist of
feaures which A and B have in common, one notes the
feaures of A that have been strongly reproduced in B(A).
Under a TFSview, first there is a transformation, then there
is a comparison. In aher words, analogy involves both
processes of high level perception and of the comparison o
static representations.

10. Conclusion

In this paper we have outlined Kitcher's (1996) criticism
of connedionist processng;, namely, that Connedionism
employs gmilarity based processng, but that its basis of
similarity is not suppated in human similarity judgments.
We have sketched out an approach based on connedionist
processng, in which similarity is conceptuaized as a
transformation. Transformational Function Similarity (TFS)
naturaly exhibits asymmetry in comparisons, so that the
similarity of A to B is not aways equal to the similarity of
B to A. This asymmetry emerges diredly from the non-
linea procesdng of connedionist networks. Connedionist
processng is thus consistent with psychologicd nations of
simil arity, and Kitcher’ s criti cism is unwarranted.

Other theories of similarity have acounted for the
asymmetric nature of comparisons by extending besicdly
symmetricd comparison procedures. In the TFS acount,
the asymmetry is a property of the comparison procedure
itself. The notion o similarity as a transformation offers a
basis from which to explain effeds sich as asymmetry that
arise from highly constrained empiricd situations, such as
asking subjeds to compare @untries. Such tasks are thought
to be simple and to reved the basic processes of similarity
judgments. That asymmetries exist even in apparently
straightforward examples could be taken to imply that the
basic medhanisms underlying comparisons must themselves
generate the ssymmetry. However, these mnsiderations may
obscure the faa that there are many more complex types of
analogicd problem solving, which invove the extended
comparisons of previousy unrelated domains. We suggest
that the eplanations for simple, rapid judgments of
similarity between concepts may differ from those required
to acournt for sower, reasoning based comparisons. The

TFS acount lies very much with the dassof smple, rapid
mechanisms.
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