

Outline of the course	
1. Basic principles on early brain growth	
2. Brain development after birth	
3. Studying brain development in vivo	
4. MRI of the brain structural development	
5. Neuroimaging of early functional activity	
Examples of neuroimaging studies on the developing sensori-motor sytem	
7 on the developing visual sytem	
 on the developing auditory system and language network 	
Jessica Dubois, Brain developme	ent

1/8 Early brain (growth	Pre-n	atal co	nnectivi	ty	
• Transien connectiv	t fetal p vity	atterns	s of conne	ctivity, diffe	erent from	post-natal
 Prenatal interactic migratior phenotyp 	develo ons with n, cells oes, cel	pment: i severa aggreg I death	coordinat al histoger ation, mol , myelinati	ed and reg netic event ecular spe ion…)	gulated by ts (prolifera tcification o	tion, f neuronal
conception	ea fet per	rly al iod	middle fetal period	early pre-term period	late pre-term period	term
0	9	15	23-24	28	-29 34	39 w PC
					Jessica Dubois, B	rain development

2/8 After birth Connectivity at birth
 Main long-distance connections are in place.
• U-fibers further develop, and cortico-cortical connectivity is reorganized by several processes including the development of dendritic arborization, the overproduction of synapses and dendritic spines and their later elimination.
 Pruning of axonal fibers like callosal connections also probably extends until the end of the first post-natal year.
Jessica Dubois, Brain development

4/8 Structural developme	ent		
Outlin	e of the stud	ied mechanisr	ns
6 months	Term birth		inths
CORTEX Folding	Microstru	cture Maturat	tion
20w GA 31w GA 40w 0	GA Birth	2 vears	
WHITE MATTER	Alk .		cholg, 1901, 1920
Development of conn	ectivity	Myelination	
20w GA 30w GA 40w G	6W PTA	birth 4 months	adult
Takahashi <i>et al,</i> 2012	adult		A LOCA
		Jessica Dubo	is, Brain development

5/8 Functional activity **Meanings of functional connectivity:**In preterms, resting-state fMRI, EEG and NIRS might reflect distinct mechanisms regarding the development of functional connectivity (Omidvarnia et al, 2013).
Functional connections related to high-amplitude EEG events would provide an endogenous guidance for the development of early "sensory-driven" activity.

Sensori-motor connections
• The peripheral sensory transmission becomes functional very early, even though the afferent input from the skin to the spinal cord is not matured yet during the last trimester.
• Spino-thalamic ascending pathways are assumed to be present from the second trimester of pregnancy.
• Sensory pathways seem to convey information from the skin to the thalamus even before the infant becomes viable for <i>ex utero</i> life.
• Developmental changes in electrophysiologial responses (somatosensory evoked potentials SEP) of preterm babies might primarily depend on the development of thalamo-cortical connections, which penetrate the cortical plate from 24 PCW (Krsnik et al, Frontiers in Neuroscience 2017).
 Motor pathways include initially contra-lateral and ipsilateral connections; the latter ones are further pruned during development.
Jessica Dubois, Brain development

8/8 Auditory system Early development of language At birth, neonates already perceive some characteristics of speech-related stimuli: they recognize the prosody of their native language, their mother voice... During the first post-natal year, the infant capacities to process speech are booming: - they learn the distribution of sounds used in their native language, the rules that govern their combination into words... - they improve their articulatory control to converge to a babbling that is specific to their native language - they integrate the auditory, visual, and motor aspects of speech in their efforts to imitate adults' utterances. How the early architecture and maturation of the brain linguistic network endow them with such abilities? Jessica Dubois, Brain development

Perspectives

From birth on, there are several evidence for audio-visual, visuo-tactile integration... But maturational timelines differ across functions: how the evolving properties of networks might still provide infants with such integration capacities?
 → Need for developmental models that integrate the spatial and temporal constraints to explore how infants process complex cross-modal information.

(Dehaene-Lambertz and Spelke, Neuron 2015)

 Neuroimaging approaches may enable to better characterize the impact of early disturbances, to "predict" outcome in newborns with neuro-developmental disorders, to evaluate the potential efficiency of learning strategies...

the European Human Brain Project

Jessica Dubois, Brain development